Limit Alarm Unit

 DG 35200

C
ead these instructions before using the product and retain for future information.

DG 35200

- Before Startup

When operating the device, certain parts can carry
dangerous voltage! Ignoring the warnings can lead dangerous voltage! Ignoring the warni
to serious injury and/or cause damage!

The device should only be installed and put into operation by qualified staff. The staff must have studied the warnings in these operating instructions thoroughly.

The device may not be put into operation if the housing is open.
In applications with high operating voltages protection must be ensured.
Safe and trouble-free operation of this device can only be guaranteed if transport, storage and an maintenance are carried out with care.

Appropriate safety measures against electrostatic discharge (ESD) should be taken during range discharge (ESD) should be taken
selection and assembly on the device.

Short description
The contigurable Limit Alarm Switch DG 35200 is used for limit monitoring and processing of unipolar and bipolar standard signals.
A SPST relay or optionally an isolated, passive transistor switch (Open-Collector) is available at the output

The Limit Alarm Unit monitors standardized current and voltage signals, and transmits the signal to the switching output. A transmitter power supply is provided for the operation of 2 -wire and 3 -wire transmitters.
The configuration is carried out via DIP switch or front interface (needs DZU 1201, see accessories). The switch point can be laught-in and corrected during operation with the front-side Teach-ln buttons. The alarm Unit has an adjustable switch-on delay, switchoff delay and a wiper function. Further settings such as memory
function and window function can be programmed via front interface.
The input is protected against polarity reversal and short circuit. The power supply can be provided via the connection terminal blocks or
via the optional In-Rail-Bus (see accessories). The switch status and the device status are indicated by LEDs on front panel. If the device is operated via the In-Rail-Bus, a common fault message is available.

- Configuration and startup

Configuring with DIP switch
Use ne dite switches to configure the device, according to table. A complete functionality of the device can be configured with the software configuration tool DRAGOset.
Configuring with software DRAGOset
In the PC mode, you can use the DRAGOset software and the DZU 1201 programming interface (see accessories) to configure the
device with or without an external power supply. DIP switghes $51-1$ to S1-4 must be in the OFF position. The DZU 1201 is used to connect the PC with the programming socket on the front panel.

DRAGOset is available at: www.drago-automation.de

Fine adjustment of the switching point

The switching point can be readjusted at any time. To increase the switching point, the upper function key must be pressed briefly. To
decrease the switching point, the lower function key must be pressed briefly. Each press of the button is indicated by a short flash of the corresponding blue LED and changes the switching point by 0.5%. If the original programmed switching point was changed in his way, the corresponding blue LED glows.

Teach-in function

The switching point can be taught-in during operation using the function keys behind the front cover (operated using a screwdriver).
The teach-in function can be activated via the DIP switches or via The teach-in function can be activated via the
DRAGOset in PC mode. There are two options for the teach-in function:

- One switching point (hysteresis according to configuration) 1. Perform configuration via DIP switch or DRAGOset and supply the device with auxiliary power

2. Connect a signal source with desired limit values on input light up of switching point is saved. The hysteresis remains unchanged as defined by DIP switch or DRAGOset.

- Sett ON and OFF switch points individually

1. Perform configuration via DIP switch or DRAGOset and supply the device with auxiliary power.
2. Connect a signal source with desired upper limit values on input.
3. Press the upper function key for approx. 3 s until the blue LED lights up \rightarrow Switch-on point is saved. 4. The lower blue LED flashes \rightarrow Connect a signal source with desired lower limit values on input.
4. Press the lower function key for approx. 3 s until the blue LED lights up \rightarrow Switch-off point is saved.
The DIP switches S2-1...S2-3 (hysteresis) have no effect.

Teach-in error

ED flashes between switch-on and switch-off point is too low, the red flashes after saving (configuration error). In case of a fault, the .

- Block Diagram

Mounting Electrical Connection
The transmitter is mounted on standard 35 mm DIN rail

- Dimensions

Connection data		
Connection	Screw terminals	Push-ln terminals
Wire cross-section	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$	$0.5 \mathrm{~mm} \mathrm{~m}^{2}-1.5 \mathrm{~mm}^{2}$
stranded fertuled	AWG $20-14$	AWG 20.16
Wire cross-section	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$
solid wire	AWG $20-14$	AWG $20-14$
Stripped length	$8 \mathrm{~mm} / 0.3 \mathrm{in}$	$8 \mathrm{~mm} / 0.3$ in
Screw terminal torque	$0.6 \mathrm{Nm} / 5 \mathrm{lbf}$ in	-

- Order Information

Limit Alarm Unit Order.-Nr. Relay Transistor Screw terminals DG 35200 S DG 35230 S Scew term DG 35200 S DG35280S Screw terminals, InDG 35200 B DG 35280 B Push-In terminals DG 35200 B DG 35280 B

LIMITED WARRANTY

DRAGO Automation GmbH hereby warrants that the Product will be free from defects in materials or workmanship for a Warranty"). This Limited Warranty is limited to repair or replacement at DRAGO's option and is effective only for the first end-user of the Product. This Limited Warranty applies only if the Product:
. is installed according to the instructions fumished by DRAGO
2. is connected to a proper power supply;
. there is no evidence of tampering, mishandling, neglect, accidental damage, modification or repair without the anyone other than DRAGO.

Delivery conditions are based upon the , GENERAL SERVICES OF THE ELECTRICAL AND ELECTRONICS INDUSTRY" recommended by the Zentralverband Elektrotechnik- und Elektronikindustrie (ZVEI) e.V.
Subject to change!

DRAGO Automation GmbH
 Waldstrasse 86-90
 13403 BERLIN
 GERMANY

Phone: $\quad+49$ (0)30 $409982-0$ E-Mail: info@drago-automation.de
Internet: www.drago-automation.de

Set the input and output ranges with DIP switches as indicated in the following table ($\bullet=\mathrm{ON}$, Factory settings: all switches in position OFF):

DIP S2 Switching point																												
4	5	6	67	78	9	10	Unipolar	Bipolar	4	5	6	7	8	9	10	Unipolar	Bipolar	4	5	6	7	8	9	10	Unipolar	Bipolar		
							-5\%	-110\%		\bullet		\bullet		\bullet		37 \%	-26\%	\bullet		\bullet		\bullet			79 \%	58 \%		
						-	-4\%	-108\%		\bullet		\bullet		\bullet	-	38 \%	- 24 \%	\bullet		\bullet		\bullet		-	80 \%	60 \%		
					\bullet		-3\%	-106\%		\bullet		\bullet	-			39 \%	-22\%	\bullet		\bullet		\bullet	\bullet		81\%	62 \%		
					-	-	-2 \%	-104\%		\bullet		-	-		-	40 \%	-20\%	\bullet		\bullet		-	-	-	82 \%	64 \%		
				\bullet			-1\%	-102\%		\bullet		\bullet	\bullet	\bullet		41 \%	-18\%	\bullet		\bullet	-				83 \%	66 \%		
				-		\bullet	0 \%	-100\%		\bullet		\bullet	-	\bullet	-	42 \%	-16\%	\bullet		\bullet	-			\bullet	84 \%	68 \%		
				\bullet	-		1%	-98\%		\bullet	\bullet					43 \%	-14\%	\bullet		-	-		\bullet		85 \%	70 \%		
				\bullet	-	-	2 \%	-96\%		\bullet	\bullet				\bullet	44 \%	-12\%	\bullet		-	\bullet		\bullet	-	86 \%	72 \%		
			\bullet	\bullet			3%	-94\%		\bullet	\bullet			\bullet		45%	-10\%	\bullet		\bullet	-	\bullet			87 \%	74 \%		
			\bullet	-		-	4 \%	-92\%		\bullet	-			-	-	46 \%	-8\%	\bullet		\bullet	-	-		-	88 \%	76 \%		
			\bullet	-	\bullet		5 \%	-90\%		\bullet	\bullet		-			47 \%	-6\%	\bullet		\bullet	\bullet	\bullet	-		89 \%	78%		
			\bullet	-	\bullet	\bullet	6 \%	-88\%		\bullet	-		\bullet		-	48 \%	-4\%	\bullet		\bullet	-	-	\bullet	-	90 \%	80 \%		
			\bullet	-			7 \%	-86\%		-	-		\bullet	-		49 \%	-2\%	\bullet	-						91 \%	82 \%		
			\bullet	\bullet		-	8 \%	-84\%		\bullet	-		-	-	-	50 \%	0\%	\bullet	-					\bullet	92 \%	84 \%		
			\bullet	\bullet	-		9%	-82\%		\bullet	\bullet	\bullet				51 \%	2\%	\bullet	-				\bullet		93 \%	86 \%		
			\bullet	-	-	-	10 \%	-80\%		-	-	\bullet			-	52 \%	4%	\bullet	\bullet				-	-	94 \%	88 \%		
		\bullet	-				11 \%	-78\%		-	\bullet	\bullet		\bullet		53 \%	6%	\bullet	-			\bullet			95 \%	90 \%		
		\bullet	-			\bullet	12 \%	-76\%		\bullet	-	\bullet		\bullet	\bullet	54 \%	8\%	\bullet	\bullet			\bullet		\bullet	96 \%	92 \%		
		\bullet	-		\bullet		13 \%	-74\%		\bullet	\bullet	\bullet	-			55%	10%	\bullet	-			-	\bullet		97%	94 \%		
		\bullet	-		-	-	14 \%	-72\%		\bullet	\bullet	-	-		-	56 \%	12 \%	\bullet	\bullet			-	\bullet	-	98 \%	96 \%		
		\bullet	-	\bullet			15 \%	-70\%		\bullet	\bullet	\bullet	\bullet	\bullet		57 \%	14 \%	\bullet	\bullet		\bullet				99%	98%		
		\bullet	-	\bullet		-	16 \%	-68\%		-	-	-	-	-	-	58 \%	16 \%	\bullet	-		\bullet			\bullet	100 \%	100 \%		
		\bullet	-	\bullet	-		17 \%	-66\%	-							59 \%	18%	\bullet	-		\bullet		\bullet		101 \%	102 \%		
		\bullet	-	\bullet	-	-	18 \%	-64\%	\bullet						-	60 \%	20%	\bullet	\bullet		\bullet		\bullet	\bullet	102 \%	104 \%		
		\bullet	- -				19 \%	-62\%	\bullet					\bullet		61 \%	22 \%	\bullet	-		\bullet	-			103 \%	106%		
		\bullet	- -	-		-	20 \%	-62\%	\bullet					\bullet	-	62 \%	24 \%	\bullet	\bullet		-	\bullet		\bullet	104 \%	108%		
		\bullet	- \cdot	-	\bullet		21\%	- 58 \%	\bullet				\bullet			63 \%	26%	\bullet	\bullet		\bullet	\bullet	-		105 \%	110 \%		
		-	- -	-	\bullet	\bullet	22 \%	-56\%	\bullet				\bullet		-	64 \%	28 \%	\bullet	-		\bullet	\bullet	\bullet	-	106 \%	112 \%		
		-	- \cdot	- \cdot			23 \%	-54\%	-				\bullet	-		65 \%	30%	\bullet	-	-					107 \%	114 \%		
		-	-	-		-	24 \%	-52\%	-				\bullet	\bullet	-	66 \%	32%	\bullet	-	\bullet				-	108%	116 \%		
		-	-	-	-		25 \%	- 50%	\bullet			\bullet				67 \%	34%	\bullet	-	\bullet			\bullet		109 \%	118 \%		
		-	- -	-	-	-	26 \%	-48\%	-			-			\bullet	68 \%	36%	\bullet	-	-			-	-	110 \%	120 \%		
	\bullet						27 \%	-46\%	\bullet			\bullet		\bullet		69 \%	38%								Unipolar	Bipolar	Live Zero	Range monitoring
	\bullet					\bullet	28 \%	-44\%	\bullet			\bullet		\bullet	-	70 \%	40%	\bullet	-	-	-				< 0 \%	<-100 \%	< 0 \%	Measuring range
	\bullet				\bullet		29 \%	-42 \%	\bullet			-	\bullet			71 \%	42%								> 100 \%	> +100 \%	> 100 \%	
	-				-	-	30%	-40\%	\bullet			-	-		-	72 \%	44%	\bullet	-	-	\bullet			\bullet		$<-102,5 \%$		Extended measuring range
	\bullet			\bullet			31 \%	-38\%	\bullet			\bullet	-	\bullet		73%	46%								$>102.5 \%$	$>+102.5 \%$	$>+103.1 \%$	$3.8 / 20.5 \mathrm{~mA}$ at $4 \ldots 20 \mathrm{~mA}$
	\bullet			\bullet		\bullet	32 \%	-36\%	\bullet			\bullet	-	-	-	74 \%	48%	\bullet	-	-	\bullet		\bullet				<-2,5 \%	NE43 error limits
	-			-	-		33 \%	- 34%	-		\bullet					75%	50%										> +106.2 \%	$3.6 / 21 \mathrm{~mA}$ at $4 \ldots 20 \mathrm{~mA}$
	\bullet			\bullet	-	-	34 \%	-32\%	\bullet		\bullet				\bullet	76%	52%										Teach-in	
	\bullet		\bullet	-			35%	-30\%	\bullet		\bullet			\bullet		77 \%	54 \%	\bullet	\bullet	\bullet	-	\bullet	-		Teach-In, on	ne switching p	point	
	\bullet		\bullet	-		\bullet	36 \%	- 28 \%	\bullet		\bullet			\bullet	-	78%	56%	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	Teach-In, O	N/OFF \rightarrow two	o switching p	oints

LED-indication
The Alarm Unit has a green, a red, a yellow and two blue LEDs on front panel.

Signaling	green	red	yellow	blue
off	No power supply	Device function ok	Alarm not triggered	Configured switching point was not changed by fine adjustment
on	Power supply is connected	Device error replacement necessary	Alarm triggered	Key acknowledgement (keystroke > 3 s)
blinking		Maintenance short-circuit transmitter supply, NE43 error, configuration error	Delay time active	Waiting for teach-in for OFF switching point
flashing		Alarm has been triggered and is being held \rightarrow Waiting for confirmation / reset		Key acknowledgement (keystroke ≤ 1 s) switching point changed by 0.5 \% through fine correction
glowing				Configured switching point was changed by fine correction

